

R Outer layer

Notation

r 2 layers

2R Inner Slice

3r 3 layers

F2C (Two Opposite Center)

2nd Center

L4C (Last Four Centers)

Do z move to make L4C on M slice. Solve centers into correct relative positions. Solve F center (3rd center), do x', solve current F center (4th center), do x', solve current F center (5th center), then 6th center will be solved automatically. One can also solve U center, then do x. Below is general idea on F center.

Relative Positions

F Center

r U' r'

Solved

r U2' r'

Unsolved edge.

F10E (First Ten Edges)

u' (R U R' F R' F' R) u

r' (U' R' U R' F R F') r

3x3

Solve the cube as if it were a 3x3.

Parity Cases which are Impossible on 3x3

OLL parityOdd flipped edges

r U2 x r U2 (r U2' r' U2) I U2 (r' U2' r U2) r' U2' r'

PLL parityOdd edge pair/corner swaps

r2 R2' U2 2R2 u2 2R2 u2 [U2]